The Effect of Low Power Ultrasonic Wave Exposure to Suppress Methicillin-Resistant Staphylococcus aureus (MRSA) In Vitro

Authors

  • Mas Mansyur Universitas Wijaya Kusuma Surabaya
  • Erni Yudaningtyas Universitas Brawijaya
  • Sumarno Reto Prawiro Universitas Brawijaya
  • Edi Widjajanto Universitas Brawijaya

DOI:

https://doi.org/10.11594/jtls.08.02.07

Keywords:

Cavitation, mechanical stress, MRSA, SEM, TEM, ultrasonic

Abstract

The incidence of methicillin-resistant Staphylococcus aureus (MRSA) infection keeps increasing in every part of the world. Currently, the infection prevalence of MRSA has reached 70% in Asia. In Indonesia in 2006 the prevalence was 23.5%; the infection prevalence of MRSA in RS Atmajaya Jakarta reached 47%, in RSUP Dr. Moh. Husin Palembang reached 46%, and RSUD Abdul Moeloek Lampung in 2013 reached 38.4%. MRSA is multiresistant to antibiotics and is hard to kill compared to most other negative gram bacteria. The purpose of this research is to find the lethal power and exposure of ultrasonic waves to kill MRSA, monitoring its ef-fects via changes in shape, size, structure and Gram staining as indicators. The observations were done mac-roscopically by culturing the MRSA in a petri dish filled with Chromagar MRSA medium, while the morpho-logical observations of MRSA were done by SEM, changes in the structure using TEM, and changes in the color of MRSA cells using Gram staining. Ultrasonic wave exposure, at a lethal power = 8.432 watt, killed a significant percentage of MRSA over the control (p = 0.000). The death indicators of the MRSA due to expo-sure to ultrasonic waves of various power were: changes in shape of MRSA affected by ultrasonic power (p = 0.005), changes in size is not affected by ultrasonic power (p= 0.470), the stain of MRSA cell staining from purple to pink affected by ultrasonic power (p = 0.000), all compared with the control. MRSA died due to ne-crosis, with physical evidence of the MRSA death such as mechanical stress marked by swollen MRSA cell, shift cell wall, crack and tears, cavitation marked by pieces of MRSA cell in the field of view due to explosions inside the cell, change to an irregular cell shape, and changes in color from black to transparent.

References

Nurkusuma D (2009) Faktor yang berpengaruh terhadap metichillin-resistant Staphylococcus aureus (MRSA) pada kasus infeksi luka pasca operasi di Ruang Perawatan Bedah Rumah Sakit Dokter Kariadi Semarang. Master Thesis. Universitas Diponegoro.

Herceg Z, Ksenija M, Å alamon BS et al. (2013) Effect of high intensity ultrasound treatment on the growth of food spoilage bacteria. Original scientific paper. University of Zagreb, Faculty of Food Technology and Biotechnology.

Song JH, Hsueh PR, Chung DR et al. (2011) Spread of methicillin-resistant Staphylococcus aureus between the community and the hospitals in Asian countries: An AN-SORP study. Journal of Antimicrobial Chemotherapy 66 (5): 1061 – 1069. doi: 10.1093/jac/dkr024.

Stefani S, Chung DR, Lindsay JA et al. (2012) Meticillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonization of typing methods. International Journal of Antimicrobial Agents 39 (4): 273 – 282. doi: 10.1016/j.ijantimicag.2011.09.030.

Schaumburg F, Kock R, Mellmann A et al. (2012) Population dynamics among methicillin-resistant Staphylococcus aureus isolates in Germany during a 6-year period. Journal of Clinical Microbiology 50 (10): 3186 – 3192. doi: 10.1128/JCM.01174-12.

Tavares A, Miragaia M, Rolo J et al. (2013) High prevalence of hospital-associated methicillin-resistant Staphylococcus aureus in the community in Portugal: evidence for the blurring of community-hospital boundaries. European Journal of Clinical Microbiology and Infectious Diseases 32 (10): 1269 – 1283. doi: 10.1007/s10096-013-1872-2.

Xiao M, Wang H, Zhao Y et al (2013) National surveillance of methicillin-resistant Staphylococcus aureus in China highlights a still-evolving epidemiology with 15 novel emerging multilocus sequence types. Journal of Clinical Microbiology 51 (11): 3638 – 3644. doi: 10.1128/JCM.01375-13.

Hess CL, Howard MA, Attinger CE (2003) A review of mechanical adjuncts in wounds healing: Hydrotherapy, ultrasound, negative pressure therapy, hyperbaric oxygen, and electrostimulation. Annals of Plastic Surgery 51 (2): 210 – 217. doi: 10.1097/01.SAP.0000058513.10033.6B.

Breuing KH, Bayer L, Neuwalder J, Orgill DP (2005) Early experience using low-frequency ultrasound in chronic wounds. Annals of Plastic Surgery 55 (2): 183 – 187. doi: 10.1097/01.sap.0000168695.20350.07.

Scherba G, Weigel RM, O'Brien WD (1991) Quantitative assessment of the germicidal efficacy of ultrasonic energy. Applied and Environmental Microbiology 57 (7): 2079 – 2084.

Lillard HS (1994) Decontamination of poultry skin by sonication. Food Technology 48 (12): 72 – 73.

Raso J, Pagan R, Condon S, Sala FJ (1998) Influence of temperature and pressure on the lethality of ultrasound. Applied and Environmental Microbiology 64 (2): 465 – 471.

Vollmer AC, Kwakye S, Halpern M, Everbach EC (1998) Bacterial stress responses to 1-Megahertz pulsed ultra-sound in the presence of microbubbles. Applied and Environmental Microbiology 64 (10): 3927 – 3931.

Belgrader P, Hansford D, Kovacs GT et al. (1999) A minisonicator to rapidly disrupt bacterial spores for DNA analysis. Analytical Chemistry 71 (19): 4232 – 4236. doi: 10.1021/ac990347o.

Singer A J, Coby CT, Singer Jr AHHCT, Tortora GT (1999). The effects of low-frequency ultrasound on Staph-ylococcus epidermidis. Current Microbiology 38 (3): 194 – 196.

Cochran SA, Prausnitz MR (2001) Sonoluminescence as an indicator of cell membrane disruption by acoustic cavitation. Ultrasound in Medicine and Biology 27 (6): 841 – 850. doi: 10.1016/S0301-5629(01)00382-9.

Chandrapala J, Oliver C, Kentish S, Ashokkumar M (2012) Ultrasonics in food processing - food quality assurance and food safety. Trends in Food Science and Technology 26 (2): 88 – 98. doi: 10.1016/j.tifs.2012.01.010.

Chandrapala J, Oliver C, Kentish S, Ashokkumar M (2012) Ultrasonics in food processing. Ultrasonics Sonochemistry 19 (5): 975 – 983. doi: 10.1016/j.ultsonch.2012.01.010.

Johns LD (2002) Nonthermal effects of therapeutic ultra-sound: The frequency resonance hypothesis. Journal of Athletic Training 37 (3): 293 – 299.

Ackerman E (1988) Biophysical science. New Jersey, Englewood Cliffs.

Dehghani HM (2005) The effectiveness of ultrasound on the destruction of E. coli. American Journal of Environmental Sciences 1 (3): 187 – 189. doi: 10.3844/ajessp.2005.187.189.

Kumar R, Yadav N, Rawat L, Goyal MK (2014) Effect of two waves of ultrasonic on waste water treatment. Journal of Chemical Engineering and Process Technology 5 (3): 193 – 198. doi:10.4172/2157-7048.1000193.

Li J, Ahn J, Liu D et al. (2016) Evaluation of ultrasound-induced damage to Escherichia coli and Staphylococcus aureus by flow cytometry and transmission electron microscopy. Applied and Environmental Microbiology 82 (6): 1828 – 1837. doi: 10.1128/AEM.03080-15

Stanisic MM, Provo BJ, Larson DL, Kloth LC (2005) Wound debridement with 25 kHz ultrasound. Advances in Skin and Wound Care 18 (9): 484 – 490. doi: 10.1097/00129334-200511000-00012.

Mansyur M, Yudaningtias E, Prawiro SR, Widjajanto E (2017) Low-Frequency ultrasonic wave to kill methicillin-resistant Staphylococcus aureus in vitro due to mechanical stress, cavitation, and chemistry effect. Turkish Journal of Biology, in press.

Hudori (2002) Studi daya reduksi desinfektans gelombang ultrasonik terhadap bakteri E. coli dengan variasi bentuk gelombang. Logika 7 (8): 32 – 38.

Cho JH, Kim EK, So JS (1995) Improved transformation of Pseudomonas putida Kt2440 by electroporation. Biotechnology Techniques 9 (1): 41–44. doi: 10.1007/BF00152998.

Tachibana K, Uchida T, Ogawa K et al. (1999) Induction of cell membrane porosity by ultrasound. Lancet 353: 1409. doi: 10.1016/S0140-6736(99)01244-1.

Deng CX, Sieling F, Pan H, Cui J (2004) Ultrasound-induced cell membrane porosity. Ultrasound in Medicine and Biology 30 (4): 519 – 526. doi: 10.1016/S0140-6736(99)01244-1.

Newman CMH, Bettinger T (2007) Gene therapy progress and prospects: ultrasound for gene transfer. Gene Therapy 14 (6): 465 – 475. doi:10.1038/sj.gt.3302925.

Frenkel V (2008) Ultrasound-mediated delivery of drugs and genes to solid tumors. Advanced Drug Delivery Reviews 60 (10): 1193 – 1208. doi: 10.1016/j.addr.2008.03.007.

Pitt WG, Ross SA (2003) Ultrasound increase the rate of bacterial cell growth. Biotechnology Progress 19 (3): 1038 – 1044. doi: 10.1021/bp0340685.

Svitelska GV, Gallios GP, Zouboulis AI (2004) Sonochemical decomposition of natural polyphenolic compound (condensed tannin). Chemosphere 56 (10): 981 – 987. doi: 10.1016/j.chemosphere.2004.05.022.

Rastogi NK (2011) Opportunities and challenges in the application of ultrasound in food processing. Critical Re-views in Food Science and Nutrition 51 (8): 705 – 722. doi: 10.1080/10408391003770583.

Ashokkumar M (2011) The characterization of acoustic cavitation bubbles—an overview. Ultrasonics Sonochemistry 18 (4): 864 – 872. doi: 10.1016/j.ultsonch.2010.11.016.

Golmohamadi A, Moller G, Powers J, Nindo C (2013) Effect of ultrasound frequency on antioxidant activity, total phenolic and anthocyanin content of red raspberry puree. Ultrasonics Sonochemistry 20 (5): 1316 – 1323. doi: 10.1016/j.ultsonch.2013.01.020.

Carel JA, Garcia-Perez JV, Benedito J, Mulet A (2012) Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering 110 (2): 200 – 207. doi: 10.1016/j.jfoodeng.2011.05.038.

de São José JFB, de Andrade NJ, Ramos AM et al. (2014) Decontamination by ultrasound application in fresh fruits and vegetables. Food Control 45: 36 – 50. doi: 10.1016/j.foodcont.2014.04.015.

Downloads

Published

2018-04-20

Issue

Section

Articles